Abstract

The mechanisms and implementation scheme of discrete tip air injection are studied in this paper. A map that summarized the routes to stall is then proposed. It is argued that there exists a critical tip clearance ratio that separates two different routes to stall, which infers that the stability enhancement can also be based on two different mechanisms. A summation of tip injection test data in the literatures demonstrates that this is actually the case. For each compressor, there are two trends in the curve of stall margin improvement (SMI) versus injected momentum ratio, which is separated by a demarcation ratio of injected momentum. A series of tests are done in a low-speed compressor to show that the micro injection, wherein the injected momentum ratio is less than the demarcation ratio, can only act on the tip leakage flow (TLF) and thus provide small SMI by weakening the self-induced unsteadiness of the tip leakage flow (UTLF), while in contrast the macro injection can provide much larger SMI by acting on the main flow, decreasing the inlet angle-of-attack and thus unloading the blade tip. Based on these findings, a novel detecting-actuating scheme is designed and implemented onto a low-speed axial compressor. A cross-correlation coefficient is used to detect the UTLF in the prestall process way before stall inception and then to guide the opening of proportional electromagnetic valves. The injected flow rate can be smoothly varied to cover both micro- and macro-injection, which saves energy when the compressor is stable, and provides protection when it is needed. The same principle is applied to a high-speed compressor with a recirculation injection and the preliminary test results are very encouraging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.