Abstract

Droughts have become more frequent and severe in Europe over the last decade - a trend expected to continue. Recent studies have shown widespread responses of energy, water, and carbon fluxes in ecosystems to single drought years from flux observations.  However, to better understand how ecosystems react to droughts, we need to gain explicit knowledge about the different factors that influence their response. In this light, it is crucial to associate the influence of droughts on diverse ecosystem types with particular compartments of the hydrological cycle (atmosphere, surface, soil, and groundwater reservoirs). For instance, during a drought, atmospheric dryness might be the dominant factor in arid regions as opposed to dry soils in humid regions. Here, we use states and fluxes of water and carbon (vapor pressure deficit, surface runoff, soil moisture, and water table depth) from the Community Land Model 5 in a 3 km resolution over Europe from 1995 to 2018 to determine the drought anomalies of ecosystem processes (gross primary production and evapotranspiration). Importantly, we apply a systematic drought concept integrating lags between deficits in a network of multiple sections of the hydrological cycle during a drought. Our analyses indicate that the dominance of a particular water resource in controlling ecosystem processes converges regionally and is predominantly consistent across drought events. This finding emphasizes using more comprehensive drought indices incorporating time lags and multiple water resources when analyzing ecosystem responses. Lastly, it identifies areas potentially threatened by droughts and their controlling water resource.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.