Abstract
It is well established that DNA damage induces checkpoint-mediated interphase arrest in higher eukaryotes, but recent studies demonstrate that DNA damage delays entry into anaphase as well. Damaged DNA in syncytial and gastrulating Drosophila embryos delays the metaphase/anaphase transition . In human cultured cells, DNA damage also induces a delay in mitosis . However, the mechanism by which DNA damage delays the anaphase onset is controversial. Some studies implicate a DNA damage checkpoint , whereas other studies invoke a spindle checkpoint . To resolve this issue, we compared the effects of random DNA breaks induced by X-irradiation to site-specific I-CreI endonuclease-induced chromosome breaks on cell-cycle progression in wild-type and checkpoint-defective Drosophila neuroblasts. We found that both the BubR1 spindle checkpoint pathway and the Grp/Chk1 DNA damage checkpoint pathway are involved in delaying the metaphase/anaphase transition after extensive X-irradiation-induced DNA damage, whereas Grp/Chk1, but not BubR1, is required to delay anaphase onset in the presence of I-CreI-induced double-strand breaks. On the basis of these results, we propose that DNA damage in nonkinetochore regions produces a Grp/Chk1 DNA-damage-checkpoint-mediated delay in the metaphase/anaphase transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.