Abstract

From information on M s for lath and lenticular martensite the driving force for the start of a formation of the two types of martensite was calculated in a number of Fe-X systems. By plotting the calculated driving force against temperature the results indicate that the driving force for formation of martensite may not be much affected by solution hardening but mainly be a function of temperature. From the kinetics of isothermal a martensite in ferrous alloys one can clearly distinguish between two groups of alloys, high alloy steels and carbon containing steels. High alloy steels with low M, temperature have a temperature dependence corresponding to a very low activation energy, possibly 7 kJ/mol. It can hardly depend on any diffusion process. Carbon containing steels have a temperature dependence corresponding to an activation energy of about 80 kJ/mol. Its rate of formation can be explained by assuming that it is triggered by submicroscopic plates of bainite formed with a rate of carbon diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.