Abstract
BackgroundCannabis sativa has been cultivated throughout human history as a source of fiber, oil and food, and for its medicinal and intoxicating properties. Selective breeding has produced cannabis plants for specific uses, including high-potency marijuana strains and hemp cultivars for fiber and seed production. The molecular biology underlying cannabinoid biosynthesis and other traits of interest is largely unexplored.ResultsWe sequenced genomic DNA and RNA from the marijuana strain Purple Kush using shortread approaches. We report a draft haploid genome sequence of 534 Mb and a transcriptome of 30,000 genes. Comparison of the transcriptome of Purple Kush with that of the hemp cultivar 'Finola' revealed that many genes encoding proteins involved in cannabinoid and precursor pathways are more highly expressed in Purple Kush than in 'Finola'. The exclusive occurrence of Δ9-tetrahydrocannabinolic acid synthase in the Purple Kush transcriptome, and its replacement by cannabidiolic acid synthase in 'Finola', may explain why the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) is produced in marijuana but not in hemp. Resequencing the hemp cultivars 'Finola' and 'USO-31' showed little difference in gene copy numbers of cannabinoid pathway enzymes. However, single nucleotide variant analysis uncovered a relatively high level of variation among four cannabis types, and supported a separation of marijuana and hemp.ConclusionsThe availability of the Cannabis sativa genome enables the study of a multifunctional plant that occupies a unique role in human culture. Its availability will aid the development of therapeutic marijuana strains with tailored cannabinoid profiles and provide a basis for the breeding of hemp with improved agronomic characteristics.
Highlights
Cannabis sativa has been cultivated throughout human history as a source of fiber, oil and food, and for its medicinal and intoxicating properties
Sequencing the C. sativa Purple Kush (PK) genome and transcriptome We obtained DNA and RNA samples from plants of PK, a clonally propagated marijuana strain that may have been bred in California and is reportedly derived from an “indica” genetic background [24]
We found that the genes encoding cannabinoid pathway enzymes and most of those encoding proteins involved in putative precursor pathways were most highly expressed in the three stages of flower development (Figure 3c)
Summary
Cannabis sativa has been cultivated throughout human history as a source of fiber, oil and food, and for its medicinal and intoxicating properties. Selective breeding has produced cannabis plants for specific uses, including high-potency marijuana strains and hemp cultivars for fiber and seed production. One of the earliest domesticated plant species, Cannabis sativa L. (marijuana, hemp; Cannabaceae) has been used for millennia as a source of fibre, oil- and protein-rich achenes ("seeds”) and for its medicinal and psychoactive properties. Wild and cultivated forms of cannabis are morphologically variable, resulting in confusion and controversy over the taxonomic organization of the genus (see [8] for review). In light of the taxonomic uncertainty, we use C. sativa to describe the plants analyzed in this study
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.