Abstract
We characterise the value function of the optimal dividend problem with a finite time horizon as the unique classical solution of a suitable Hamilton–Jacobi–Bellman equation. The optimal dividend strategy is realised by a Skorokhod reflection of the fund’s value at a time-dependent optimal boundary. Our results are obtained by establishing for the first time a new connection between singular control problems with an absorbing boundary and optimal stopping problems on a diffusion reflected at $0$ and created at a rate proportional to its local time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.