Abstract
The sesquiterpene geosmin, mainly originating from cyanobacteria, is considered one of the problematic odor compounds responsible for unpleasant-tasting and -smelling water episodes in freshwater supplies. The biochemistry and genetics of geosmin synthesis in cyanobacteria is well-elucidated and the geosmin synthase gene (geo) has been cloned and characterized in recent years. However, understanding the diversity, origin, and evolution of geo has been hindered by the limited availability of geo sequences to date. On the basis of the cloned geo sequences from16 filamentous geosmin-producing cyanobacterial species, representing 11 genera in Nostocales and Oscillatoriales, the diversity and evolution of geo in cyanobacteria was systematically analyzed in this study. Homologous alignment revealed that geo is highly conserved among the examined cyanobacterial species, with DNA sequence identities >0.72. Phylogenetic reconstruction and codon bias analysis based on geo suggest that cyanobacterial geo form a monophyletic branch with a common origin and ancestor for cyanobacteria, actinomycetes, and myxobacteria. The global ratio of nonsynonymous/synonymous nucleotide substitutions (dN/dS) was 0.125, which is substantially <1 and indicates strong purifying selection in the evolution of cyanobacterial geo. To add to further interest, horizontal gene transfer of cyanobacterial geo in evolutionary history was confirmed by the discovery of an incongruent coevolutionary relationship between geo and housekeeping genes 16S rDNA and rpoC. The present study enhances the fundamental understanding of cyanobacterial geo in diversity and evolution, and sheds light on the development of molecular assays for detection and molecular ecology research of geosmin-producing cyanobacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.