Abstract

An 800 sq-arcmin mosaic image of the W3 star forming complex obtained with the Chandra X-ray Observatory gives a valuable new view of the spatial structure of its young stellar populations. The Chandra image reveals about 1300 faint X-ray sources, most of which are PMS stars in the cloud. Some, but not all, of the high-mass stars producing hypercompact and ultracompact H II (UCHII) regions are also seen, as reported in a previous study. The Chandra images reveal three dramatically different embedded stellar populations. The W3 Main cluster extends over 7 pc with about 900 X-ray stars in a nearly-spherical distribution centered on the well-studied UCHII regions and high-mass protostars. The cluster surrounding the prototypical UCHII region W3(OH) shows a much smaller (<0.6 pc), asymmetrical, and clumpy distribution of about 50 PMS stars. The massive star ionizing the W3 North H II region is completely isolated without any accompanying PMS stars. In W3 Main, the inferred ages of the widely distributed PMS stars are significantly older than the inferred ages of the central OB stars illuminating the UCHIIs. We suggest that different formation mechanisms are necessary to explain the diversity of the W3 stellar populations: cluster-wide gravitational collapse with delayed OB star formation in W3 Main, collect-and-collapse triggering by shock fronts in W3(OH), and a runaway O star or isolated massive star formation in W3 North.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.