Abstract

A model tetravalent network fluid, crystal and many glasses are studied by molecular dynamics simulation. 171 glasses were made by compressing the fluid with five orders of magnitude variation in the quench rate. The pressure and entropy of each glass are expressed as functions of a single variable, the quench rate dependent limiting density, z 0 of the rigidly jammed state where the pressure diverges. The number of possible glasses with limiting density z0 is approximated by a Gaussian distribution N g(z 0)dz0 = exp{1·2N}exp(-123N(Δz 0)2}dz0, where Δz 0 = z 0 −0·766 and N is the number of molecules. That distribution implies that In {N g(z 0)}/N → 0 as z 0 → 0·864, which suggests that an ideal glass transition would occur to a glass with z 0 = 0·864 with slow compression rates, if the fluid did not freeze. We show that the free energy and pressure of the dense fluid can be simply expressed in terms of the properties of the glasses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.