Abstract
This is a continuation of the Cambridge Tract “Harmonic maps between Riemannian polyhedra”, by J. Eells and the present author. The variational solution to the Dirichlet problem for harmonic maps with countinuous boundary data is shown to be continuous up to the boundary, and thereby uniquely determined. The domain space is a compact admissible Riemannian polyhedron with boundary, while the target can be, for example, a simply connected complete geodesic space of nonpositive Alexandrov curvature; alternatively, the target may have upper bounded curvature provided that the maps have a suitably small range. Essentially in the former setting it is further shown that a harmonic map pulls convex functions in the target back to subharmonic functions in the domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.