Abstract

The growth of optic axons towards experimentally rotated tecta has been studied. In stage 24/25 embryos, a piece of the dorsal neural tube, containing the dorsal midbrain rudiment, was rotated through 180 degrees. At later stages of development, the pathways of growing optic axons were investigated by labelling with either horseradish peroxidase or fluorescent dye. It is shown that retinal ganglion cell axons followed well-defined pathways, in spite of the abnormal structure of the brain, and were able to locate displaced tecta. This directed outgrowth of retinal axons in the optic tracts appears to be related either to the tectum or to some other component included in the graft operations. In tadpoles in which the midbrain rudiment was removed, optic axons still followed the normal course of the optic tract. This observation argues against long-range target attraction as being essential in guiding growing retinal axons towards the tectum. An alternative axon guidance mechanism, selective fasciculation, is discussed as a possible alternative to explain the directed axon outgrowth which occurs in both the normal and in these experimentally manipulated tadpoles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.