Abstract

Simple models of the star-branched and linear polymers were studied by means of a Monte Carlo method. The chains were confined on a simple cubic lattice. Star-branched polymers consisted of f=3 arms of equal length. The total number of beads in both types of polymers was varied from N=49 to N=799. The simulations were performed in different solvent qualities—from a good solvent to a collapsed globule regime. The static properties of the chains under consideration were measured as functions of the temperature of the system. It appeared that the ratio of the radius of gyration to the mean end-to-end vector is very sensitive to solvent quality. It shows that the coil-to-globule transition is a complicated phenomenon. The possible explanation of the phenomenon is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.