Abstract

Absolute constraints are limitations on genetic variation that preclude evolutionary change in some aspect of the phenotype. Absolute constraints may reflect complete absence of variation, lack of genetic variation that extends the range of phenotypes beyond some limit, or lack of additive genetic variation. This last type of absolute constraint is bidirectional, because the mean cannot evolve to be larger or smaller. Most traits do possess genetic variation, so bidirectional absolute constraints are most likely to be detected in a multivariate context, where they would reflect combinations of traits, or dimensions in phenotype space that cannot evolve. A bidirectional absolute constraint will cause the additive genetic covariance matrix (G) to have a rank less than the number of traits studied. In this study, we estimate the rank of the G-matrix for 20 aspects of wing shape in Drosophila melanogaster. Our best estimates of matrix rank are 20 in both sexes. Lower 95% confidence intervals of rank are 17 for females and 18 for males. We therefore find little evidence of bidirectional absolute constraints. We discuss the importance of this result for resolving the relative roles of selection and drift processes versus constraints in the evolution of wing shape in Drosophila.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.