Abstract
The ground level of boreal pine forests consists of a dense layer of ericaceous shrubs, herbs, grasses, mosses and lichens. The primary productivity of this forest floor vegetation is notable but the role the most common ericoid dwarf shrub plant species, Calluna vulgaris, Vaccinium myrtillus and Vaccinium vitis-idaea, play in carbon (C) cycling in these ecosystems is poorly understood. Here, we studied their C dynamics in detail using plants of similar size (age 14–19 months) in a microcosm study. We determined the full C balances of these dwarf shrubs for the first time and compared them to those of Pinus sylvestris by using long-term biomass accumulation, ¹³C pulse labelling and CO₂ exchange measurements in a controlled laboratory experiment. Pinus sylvestris had significantly higher biomass-based C fluxes than dwarf shrubs, both aboveground and belowground, but the dwarf shrubs did not differ in the biomass-based fluxes. We showed that root respiration of the evergreen ericoid dwarf shrubs was sensitive to the aboveground light conditions as belowground respiration was 50–70% higher under light compared with dark conditions. Such light-related differences were not observed for Scots pine. The observed differences in C dynamics are important in estimating the origin of belowground CO₂ fluxes and in evaluating their biological relevance. Our results improve current understanding of CO₂ sources and sinks in boreal ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.