Abstract

Dietary fibre comprises a complex group of polysaccharides that are indigestible but are fermented by gut microbiota, promoting beneficial effects to the intestinal mucosa indirectly through the production of short chain fatty acids. We found that a polysaccharide, rhamnogalacturonan (RGal), from the plant Acmella oleracea, has direct effects on intestinal epithelial barrier function. Our objective was to determine the mechanism whereby RGal enhances epithelial barrier function. Monolayers of colonic epithelial cell lines (Caco-2, T84) and of human primary cells from organoids were mounted in Ussing chambers to assess barrier function. The cellular mechanism of RGal effects on barrier function was determined using inhibitors of TLR-4 and PKC isoforms. Apically applied RGal (1000 μg ml-1 ) significantly enhanced barrier function as shown by increased transepithelial electrical resistance (TER) and reduced fluorescein isothiocyanate (FITC)-dextran flux in Caco-2, T84 and human primary cell monolayers, and accelerated tight junction reassembly in Caco-2 cells in a calcium switch assay. RGal also reversed the barrier-damaging effects of inflammatory cytokines on FITC-dextran flux and preserved the tight junction distribution of occludin. RGal activated TLR4 in TLR4-expressing HEK reporter cells, an effect that was inhibited by the TLR4 inhibitor, C34. The effect of RGal was also dependent on PKC, specifically the isoforms PKCδ and PKCζ. RGal enhances intestinal epithelial barrier function through activation of TLR4 and PKC signalling pathways. Elucidation of RGal mechanisms of action could lead to new, dietary approaches to enhance mucosal healing in inflammatory bowel diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.