Abstract
Zebrafish retinal cone signals shift in spectral shape through larval, juvenile, and adult development as expression patterns of eight cone-opsin genes change. An algorithm extracting signal amplitudes for the component cone spectral types is developed and tested on two thyroxin receptor β2 (trβ2) gain-of-function lines crx:mYFP-2A-trβ2 and gnat2:mYFP-2A-trβ2, allowing correlation between opsin signaling and opsin immunoreactivity in lines with different developmental timing and cell-type expression of this red-opsin-promoting transgene. Both adult transgenics became complete, or nearly complete, "red-cone dichromats," with disproportionately large long-wavelength-sensitive (LWS)1 opsin amplitudes as compared with controls, where LWS1 and LWS2 amplitudes were about equal, and significant signals from SWS1, SWS2, and Rh2 opsins were detected. But in transgenic larvae and juveniles of both lines it was LWS2 amplitudes that increased, with LWS1 cone signals rarely encountered. In gnat2:mYFP-2A-trβ2 embryos at 5 d postfertilization (dpf), red-opsin immunoreactive cone density doubled, but red-opsin amplitudes (LWS2) increased <10%, and green-opsin, blue-opsin, and UV-opsin signals were unchanged, despite co-expressed red opsins, and the finding that an sws1 UV-opsin reporter gene was shut down by the gnat2:mYFP-2A-trβ2 transgene. By contrast both LWS2 red-cone amplitudes and the density of red-cone immunoreactivity more than doubled in 5-dpf crx:mYFP-2A-trβ2 embryos, while UV-cone amplitudes were reduced 90%. Embryonic cones with trβ2 gain-of-function transgenes were morphologically distinct from control red, blue or UV cones, with wider inner segments and shorter axons than red cones, suggesting cone spectral specification, opsin immunoreactivity and shape are influenced by the abundance and developmental timing of trβ2 expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.