Abstract

The characteristics of fibrous veins of gypsum and other minerals are described and it is concluded that the growth of the fibres kept pace with the dilation of the veins because fluid pressures were in excess of lithostatic pressures but less than the combined lithostatic pressures and tensile strengths of the fibres. Crystallization in the regions of greatest tensile strain in the fibres would be promoted by the greater probability of atoms being accommodated in the crystal structure. The free energy associated with the crystal dislocations which are likely to be concentrated in these regions would contribute to the crystallization process and allow it to proceed at very low levels of supersaturation. Crystallization during tensile strain explains the common occurrence of strain effects such as undulose extinction and dislocation planes in fibrous crystals. It is suggested that polycrystalline aggregates may deform under triaxial stress by pressure solution of the grains on planes approximately perpendicular to the direction of greatest stress and simultaneous crystallization of elongate crystals in the direction of maximum extension from the points of concentrated tensile strain. Tensile strain crystallization may be an important mechanism in the development of penetrative preferred orientations in metamorphic rocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.