Abstract

Energy on demand is an important concept in remote sensor development. The fabrication process for silicon-wafer-based, totally enclosed galvanic cells is presented herein. Benzocyclyobutene (BCB), a photo-patternable material, is used as the adhesive layer between the silicon wafers on which metal electrodes are patterned to form the cells' electrolyte cavity. As a case study, and since aluminum is an anode material with thermodynamic high energy density, this metal is evaporated onto a wafer and used as an anode. A sputtered platinum film collects the charge and provides a catalytic surface in the cell cathode. The metal film patterning process and wafer-to-wafer bonding with BCB is detailed. The difficulties encountered, and design modifications to overcome these, are presented. Cells of the mentioned design were activated with sodium hypochlorite solution electrolyte. Typical potential outputs for the cells, as a function of operational time, are also presented. With a 5 kΩ load, a potential of 1.4 V was maintained for over 240 min, until depletion of the electrolyte occurred. Average cell energy outputs under electrical loads between 100 Ω and 5 kΩ were in the range of 4–10 J with columbic densities ranging from 45 to 83 Ah L−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.