Abstract

The aim of this work is to introduce and study the nondegenerate inner product $<\cdot , \cdot >_{det}$ induced by the determinant map on the space $Sym(2)$ of symmetric $2\times 2$ real matrices. This symmetric bilinear form of index $2$ defines a rational symmetric function on the pairs of rays in the plane and an associated function on the $2$-torus can be expressed with the usual Hopf bundle projection $S^3\rightarrow S^2(\frac{1}{2})$. Also, the product $<\cdot , \cdot >_{det}$ is treated with complex numbers by using the Hopf invariant map of $Sym(2)$ and this complex approach yields a Heisenberg product on $Sym(2)$. Moreover, the quadratic equation of critical points for a rational Morse function of height type generates a cosymplectic structure on $Sym(2)$ with the unitary matrix as associated Reeb vector and with the Reeb $1$-form being half of the trace map.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.