Abstract

The sediments of Lake Chiemsee, located in the Alpine foreland in Southern Germany, host a variety of magnetotactic bacteria (MTB), which contain intracellular crystals of magnetite arranged in linear chains. To detect bacterial magnetite in the carbonate-dominated surface sediments and further quantify its contribution to the magnetic signal of the sediments, we conducted detailed rock magnetic measurements as well as complimentary non-magnetic analyses (electron microscopy, powder X-ray diffraction, and sediment pore-water analysis). Our results demonstrate that biogenic single-domain magnetite (characterized by bullet- and truncated hexagonal prismatic shapes) is the dominant ferrimagnetic component in the topmost few centimetres of the sediment. The changes of magnetic properties with depth are due to the occurrence of live MTB and the downward increasing dissolution of biogenic magnetite. Moreover, the ratios of remanence loss on warming through the Verwey transition after field cooling and zero-field cooling of saturation isothermal remanence ( δ FC/ δ ZFC) were determined as 1.47 and 1.25 for freeze-dried and air-dried sediment samples containing MTB, respectively. These low ratios suggest that the bacterial magnetite chains were disrupted to a large extent and/or that the bacterial magnetosomes might have undergone partial low-temperature oxidation. It is proposed that although rock magnetic measurements are suitable for quantifying the contribution of fine-grained particles to the overall magnetic signal of sediments, complementary non-magnetic methods are essential to unambiguously identify its bacterial origin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.