Abstract

DTA in conjuction with X-ray diffraction analysis with a high-temperature camera and infrared spectroscopy was employed to determine the mechanism of oxidation of Ni-P alloys. Amorphous Ni-P powders were obtained from a nickel(II) sulphate bath as a nickel source and sodium dihydrophosphate(I) as a reducing agent. The crystallization product is composed of two phases: (f.c.c.) Ni and (b.c.t.) Ni3P. The amorphous to crystalline transformation takes place in the temperature range 280–330°C. Ni3P samples were heated from room temperature to 1050°C in air atmosphere at 5°C min−1. It was found that the first stage of oxidation of Ni3P goes through the intermediate phase of Ni12P5 formation to Ni2P. Some exothermic reactions were observed. Heating runs were interrupted after each reaction for crystal structure determination by IR spectrometry. Infrared spectra are reported and it is shown that the structure units present in the amorphous products at about 700°C were the oxoanions PO3− and P2O7−. The final products of the oxidation process are NiO and Ni3(PO4)2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.