Abstract

All-optical logic gate is a basic and crucial element for optical signal processing. In this paper, we propose a 4×2 encoder based on two dimensional triangular lattice photonic crystals composed of cylindrical silicon rods. The main structure of the device is a combination of both line defect Y branch and coupler photonic crystal waveguides. The computational simulation is carried out by using a finite-difference time-domain (FDTD) method. The simulation results show that the proposed all-optical photonic crystal waveguide structure could really function as a 4×2 encoder logic gate. In addition, the distance between coupler photonic crystal waveguides, the length of coupler waveguides and the distance between line defect Y branch waveguide structure are optimized for achieving the optimal performance for the proposed encoder logic gates. This device is potentially applicable for photonic integrated circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.