Abstract

A structure for single-stage high-order bandpass sigma-delta modulators (BPSDMs) is presented. The proposed structure introduces an additional internal path in each resonator, thus, adding one degree of freedom in coefficient determination. Coefficient spread can therefore be reduced, resulting in significantly reduced capacitance area in switched-capacitor BPSDM circuits. High-order BPSDMs with different quality factors (Q) are demonstrated. It shows that coefficient spread is significantly reduced, especially for high-Q applications. For comparable eighth-order 3-bit BPSDMs, the maximum coefficient spread are respectively 15369 and 7693 for conventional cascade-of-resonator-with-feedback (CRFB) and cascade-of-resonator-with-feedforward (CRFF) designs, and 114 for the proposed structure. For an eighth-order 1-bit example, these respective values are 8994, 2638, and 74. With coefficient mismatch, peak signal-to-noise ratio (PSNR) degradation of the proposed structure is less than those of the CRFB and CRFF structures, demonstrating reduced sensitivity to component mismatch. Hence, the proposed structure can reduce chip area and ease circuit implementation of BPSDMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.