Abstract

This paper presents the design of signal conditioning and acquisition elements of a chopped broadband radiation pyrometer. This instrument is capable of measuring temperature between 900 o C and 1200 o C. This work aims at solving the problem of measuring hot objects with a thermometer. The radiation pyrometer is a non-contact temperature sensor that infers the temperature of an object by detecting its naturally emitted thermal radiation. It collects the visible and infrared energy and focuses it on a detector. The detector used in this device is a thermal sensor. It receives heat energy reflected from a mirror inclined at 45 o to the incident signal from the hot object. The design achieved the following: temperature range measured, from 900℃ to 1200℃; the calibrated instrument is fairly linear with a tolerable non-linearity of 3.6%, with the sensitivity of 0.014��℃ −1 ; the resolution was quite very small as such it can easily detect the slightest change at its input; the rotating shutter was configured to supply the chopped signal; it operates at a frequency of 50Hz that is lower than the system frequency of 200Hz; the data acquisition system was able to capture data at a periodic time of 0.02 second and below, the system operates within the specified sampling range thus, satisfying Nyquist criteria. The signal so received by the detector is translated to a human readable form and sent to a display.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.