Abstract

The design, calibration, and use of a noninvasive, noncontact device for stimulating hair cell hair bundles in vitro are described. This device employed a piezoelectric crystal, driven at high frequencies, to generate sinusoidal pressure in a contained fluid volume. The pressure was propagated to the tip of a glass micropipette and the oscillating water jet stimulus produced at the tip was used to stimulate sensory hair bundles. The movements of glass microbeads, caught in the oscillating pressure field of the water jet, provided a means of calibrating this stimulus. The linearity of the jet, its waveform and frequency response, the influence of pipette shape and tip diameter, as well as models to explain the operation of the water jet, are described. The use of this stimulus for measuring hair bundle micromechanics at high frequencies is then demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.