Abstract
This article presents the plan and initial feasibility studies for an Integrated Wire Bond-less Power Module. Contemporary power modules are moving toward unprecedented levels of power density. The ball has been set rolling by a drastic reduction in the size of bare die power devices owing to the advent of wide bandgap semiconductors such as silicon carbide (SiC) and gallium nitride. SiC has capabilities of operating at much higher temperatures and faster switching speeds compared with its silicon counterparts, while being a fraction of their size. However, electronic packaging technology has not kept pace with these developments. High-performance packaging technologies do exist in isolation, but there has been limited success in integrating these disparate efforts into a single high-performance package of sufficient reliability. This article lays the foundation for an electronic package designed to completely leverage the benefits of SiC semiconductor technology, with a focus on high reliability and fast switching capability. The interconnections between the gate drive circuitry and the power devices were implemented using a low temperature cofired ceramic interposer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Microelectronics and Electronic Packaging
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.