Abstract
We introduce an arithmetic model of parallel computation. The basic operations are ½ and Š gates over finite fields. Functions computed are unary and increasing input size is modelled by shifting the arithmetic base to a larger field. When only finite fields of bounded characteristic are used, then the above model is fully general for parallel computations in that size and depth of optimal arithmetic solutions are polynomially related to size and depth of general (boolean) solutions. In the case of finite fields of unbounded characteristic, we prove that the existence of a fast parallel (boolean) solution to the problem of powering an integer modulo a prime (and powering a polynomial modulo an irreducible polynomial) in combination with the existence of a fast parallel (arithmetic) solution for the problem of computing a single canonical function, f<em>(x)</em>, in the prime fields, guarantees the full generality of the finite field model of computation. We prove that the function f<em>(x)</em>, has a fast parallel arithmetic solution for any ''shallow'' class of primes, i.e. primes <em>p</em> such that any prime power divisor <em>q</em> of <em>p</em> -1 is bounded in value by a polynomial in log <em>p</em>.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.