Abstract

The chemical and physical interactions of ultra-thin teflon-like films at interfaces are a surface science problem with many technological implications. Such films are the material of choice for protective layers and anti-adhesive coatings. During the replication of microstructures in polymers by hot embossing, interfacial forces between the master and the replica need to be reduced by an anti-adhesive layer, in order to ensure a clean demolding process. In this work, we investigated two different teflon-like films, one obtained by ion sputtering, and the other by plasma polymerization. Using both deposition methods, we deposited thin fluorinated films on nickel substrates and conducted depth-resolved X-ray Photoelectron Spectroscopy (XPS) measurements for a detailed comparison. In a subsequent step, nickel surfaces covered by both anti-adhesive coatings were hot embossed into two different polymers. The chemical composition of both the anti-adhesive film and the polymer replicas was monitored, as a function of the number of embossings made with the same Polytetrafluoroethylene (PTFE)-treated nickel stamp. During the embossing process, a transfer of material was found to occur from the teflon-like film to the embossed polymer, consisting of fluorinated entities or small polymer chains. The influence of the operating parameters on these phenomena was also investigated and resulted in a better understanding of the film/polymer interactions under pressure and at high temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.