Abstract

The influence of the three parameters (with two degrees of freedom) fluence, intensity, and time on rate coefficients and product yields in collisionless Unimolecular Reactions Induced by Monochromatic Infrared Radiation (URIMIR) is discussed in some detail in terms of the recently proposed logarithmic reactant fluence plots. Model calculations for several archetypes of such plots are presented, based on solutions of the Pauli master equation and solutions of the quantum mechanical equations of motion for spectra involving many states at each level of excitation. Linear diagrams, turnups, and turnovers are found and are discussed systematically. Experimental examples re-evaluated from the literature and new measurements on the laser induced decomposition of CF2HCl are reported which nicely illustrate the various theoretical possibilities. Steady state rate coefficients for six molecules are evaluated and summarized. In some situations the intrinsic nonlinear intensity dependence of the steady state rate coefficients and deviations from simple fluence dependence of the product yields both before and at steady state are shown to be important theoretically and experimentally. The role of the reducibility of the rate coefficient matrix is discussed in connection with turnovers and with the strong influence of initial temperature that is found in the laser induced decomposition of CF2HCl.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.