Abstract

The hippocampus is an important area for memory encoding and retrieval and is the location of spike timing-dependent plasticity (STDP), a basic phenomenon of learning and memory. STDP is facilitated if acetylcholine (ACh) is released from cholinergic neurons during attentional processes. However, it is unclear how ACh influences postsynaptic changes during STDP induction and determines the STDP magnitude. To address these issues, we obtained patch clamp recordings from CA1 pyramidal neurons to evaluate the postsynaptic changes during stimuli injection in Schaffer collaterals by quantifying baseline amplitudes (i.e., the lowest values elicited by paired pulses comprising STDP stimuli) and action potentials. The results showed that baseline amplitudes were elevated if eserine was applied in the presence of picrotoxin. In addition, muscarinic ACh receptors (mAChRs) contributed more to the baseline amplitude elevation than nicotinic AChRs (nAChRs). Moreover, the magnitude of the STDP depended on the magnitude of the baseline amplitude. However, in the absence of picrotoxin, baseline amplitudes were balanced, regardless of the ACh concentration, resulting in a similar magnitude of the STDP, except under the nAChR alone-activated condition, which showed a larger STDP and lower baseline amplitude induction. This was due to broadened widths of action potentials. These results suggest that activation of mAChRs and nAChRs, which are effective for baseline amplitudes and action potentials, respectively, plays an important role in postsynaptic changes during memory consolidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.