Abstract
By using the field-theoretic method, we established a unified systematic formulation of a model of counterions and coions confined in two similarly charged plates, and calculated the density distributions of counterions and coions with various coupling parameters by the two methods: Poisson-Boltzmann (PB) approach and the strong coupling (SC) theory, respectively. We also performed Monte Carlo simulations, and obtained the density distributions of counterions and coions with several different coupling parameters. Comparing our theoretical results with those from Monte Carlo simulation, we find that the PB approach is valid when the coupling parameter Xi is smaller than 1, but, as Xi > or = 1, the results by the PB approach deviate from the corresponding Monte Carlo simulation data, and the deviation gets larger with the coupling parameter increasing. This shows that the PB approach is completely invalid when the coupling parameter is equal to 1 or larger than 1. For the latter case, the development trend of the distribution curve calculated by SC theory agrees with that from Monte Carlo simulation as the coupling parameter increases. This demonstrates that the SC theory can give a qualitative available explanation on the density distribution of the counterions in the system in which the coupling parameters are strictly confined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.