Abstract
In sociological research based on online public opinion, scholars often overlook the delay and combinatory nature of online responses to real-world events. This study aims to explore the delayed and combinatory responses of online public opinion to the intensity of the COVID-19 pandemic. Specifically, we seek to answer the following questions: (a) Is there a temporal delay in the response of online public opinion to the intensity of the pandemic? (b) Does this delay exhibit general characteristics of social networks, such as combinatory effects and higher-order interactions? To address these questions, we employ natural language processing techniques to extract online public opinion data and utilize statistical and machine learning-based causal inference methods for analysis. The findings indicate that online public opinion’s response to the intensity of COVID-19 is not immediate but rather exhibits a long-term lag. Identical COVID-19 intensity data can trigger multiple delayed public opinion responses, while a single delayed public opinion datum may be influenced by multiple preceding COVID-19 intensity data points. This delayed response of online public opinion and its higher-order network characteristics result in a waveform structure of real-world impacts influenced by online public opinion. We also utilized machine learning causal inference techniques to investigate the sensitivity differences in online public opinion responses to COVID-19 during various time periods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.