Abstract

IdeS (IgG-degrading enzyme of Streptococcus pyogenes) is a virulence factor for S. pyogenes, group A Streptococcus (GAS). IdeS is believed to allow GAS to evade antibody-mediated phagocytosis by cleaving IgG at the lower hinge region. Human immunoglobulins bind to the GAS surface by two mechanisms: Specific antibodies attach at the Fab region to their specific antigens on the bacterial surface. Immunoglobulins can also attach nonspecifically at the Fc region to streptococcal M and M-like proteins. This phenomenon is believed to form the host-like coat and to block the recognition of Fc region by Fc receptor on phagocytes and antibody-dependent cell-mediated cytotoxicity. It is not known whether IdeS preferentially cleaves IgG attached at the Fab or Fc regions. To explore this issue, we used Sepharose beads coated with protein A or L or M protein as surrogate markers for specific (Fab) and nonspecific (Fc) binding sites. We found that IdeS cleaved Fab-bound IgG as rapidly as soluble IgG. In contrast, Fc-bound IgG was cleaved about 4 fold less than soluble IgG. In a competitive binding assay, we found that M protein had a greater affinity than IdeS to attach to the Fc region of human IgG. Thus, IdeS exhibited preferential IgG endopeptidase activity for Fab-bound IgG while allowing the non-specific binding of IgG to remain attached to M protein. We propose that this preferential enzymatic activity accounts for the ability of GAS to resist immunoglobulin-mediated phagocytosis and cytotoxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.