Abstract

A particle roaming in a potential in the presence of spatial heterogeneities such as traps or physical barriers is a mathematical representation of a vast number of processes across multiple disciplines, ranging from the dynamics of chemical reactions and the movement of foraging animals to the performance of a financial asset. Among the approaches to tackle such problems, a powerful one is the so-called defect technique. Within a continuous space–time formulation, the technique has been successfully used to analyze diffusion problems with partially absorbing boundaries, but has not been employed to study other types of boundaries. Here we exploit the continuity equation to extend the defect technique to when partially reflecting barriers are present. For each boundary type, we apply the defect formalism to the Ornstein–Uhlenbeck process, recovering known analytical results and presenting new ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.