Abstract

The structural perturbations induced by polytetrahydrofuran (PTHF) on sol–gel hybrid films were identified by Fourier-transform infrared (FTIR) spectroscopy. The films were prepared by spin-coating, from aged solutions containing tetraethylorthosilicate (TEOS) as the inorganic precursor and different concentrations of PTHF. All the spectra reveal a set of bands that may be associated with structural defects of the silica network. The hybrid films show an additional `defect' band at 560 cm −1 , assigned to a skeletal vibration of 4-fold siloxane rings, whose intensity grows as the polymer content or molecular weight increases. The relative intensity of two components of the ν asSi–O–Si mode (resolved by deconvolution of the band at ∼ 1080 cm −1 ) grow accordingly. They were thus assigned to the longitudinal (LO) and transverse optical (TO) modes of that vibration in 4-fold siloxane rings. Simultaneously, the bands assigned to the νSi–O − mode and to the νSi–O(H) mode of unreacted silanol groups (obtained by deconvolution of the band at ∼ 950 cm −1 ) increase. These conjugated observations lead to the conclusion that the polymer hinders the condensation reactions, being responsible for a more porous structure, with retention of a larger proportion of 4-fold siloxane rings. For high concentrations of high molecular weight PTHF, the defect structure of the films indicates that a partial segregation of the polymer occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.