Abstract

The decomposition of gaseous products of the chemical transport reaction that occurs in the interaction between H2O2 vapor and ZnO was studied on the surface of silica gel. At the initial stage of the decomposition of the intermediate complex formed in the chemical transport reaction between H2O2 and ZnO, the specific surface area of the sorbent increases noticeably. The pore size distribution maximum simultaneously shifts toward smaller values. The opposite effect is observed as the time of holding silica gel in a flow of gaseous products of the chemical transport reaction between H2O2 and ZnO increases. The treatment of the silica sorbent by the intermediate complex formed in the reaction between H2O2 and ZnO substantially influences the fractal dimension of its surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.