Abstract

The current study describes biological changes in Bacillus megaterium A14K cells growing in the presence of 2,3,7,8-Tetrachlorinated dibenzo-p-dioxin (TCDD), the most potent congener of dioxins. The results indicate that the metabolizing of 2,3,7,8-TCDD by BmA14K was accompanied with a novel morphological and biophysical profile typified by the growth of single cells with high levels of biosurfactant production, surface hydrophobicity and cell membrane permeability. Moreover, the TCDD-grown bacteria exhibited a specific fatty acid profile characterized by low ratios of branched/straight chain fatty acids (BCFAs/SCFAs) and saturated/unsaturated fatty acids (SFAs/USFAs) with a specific “signature” due to the presence of branched chain unsaturated fatty acids (BCUFAs). This was synchronized with a significant induction of P450BM-1, an unsaturated fatty acid-metabolizing enzyme in B. megaterium. Subsequently, the profile of oxygenated fatty acids in the TCDD-grown bacteria was typified by the presence of 5,6-epoxy derived from unsaturated C15, C16 and C17 fatty acids, that were absent in control bacteria. A net increase was also detected in both hydroxylated and epoxidized fatty acids, especially those derived from C15:0 and C16:1, respectively, suggesting a specific TCDD-induced “signature” of oxygenated fatty acids in BmA14K. Overall, this study sheds light on the use of B. megaterium A14K as a promising bioindicator/biodegrader of dioxins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.