Abstract

A vaccine against Plasmodium falciparum malaria is needed now more than ever due the resurgence of the parasite and the increase in drug resistance. However, success in developing an effective malaria vaccine has been elusive. Among pre-erythrocytic antigens, the major antigen coating the surface of the sporozoite, the circumsporozoite protein (CS), has been, and continues to be, the major target for vaccine development. Despite initial limited success with CS-based vaccines, the use of new adjuvant formulations has led to the development of a promising candidate (the RTS,S vaccine) which has shown significant efficacy in a preliminary trial. In addition to CS, many other malaria antigens have been identified that play an important role in the parasite life cycle which are being considered for, or are currently undergoing, clinical trials. Among the blood stage antigens, the merozoite surface protein 1 (MSP-1) is the most promising vaccine candidate. New approaches to immunisation against malaria being considered include the use of multistage, multicomponent vaccines in attenuated viral vectors (NYVAC-Pf7), or in a combination DNA vaccine. While there is reason to be optimistic about the prospects for an effective vaccine, many challenges lie ahead that still have to be overcome. Among these are the antigenic polymorphism exhibited by wild parasite strains and the genetic restriction of immune responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.