Abstract
Hydrogen storage is an indispensable component of hydrogen-based fuel economy. Chemical hydrogen storage relies on the development of lightweight compounds which can deliver high weight percentage of H2 at moderate temperatures through dehydrogenation and can be recovered from the dehydrogenated mass by hydrogenation for reuse. In this feature article we primarily discuss the mechanistic underpinnings of the catalytic dehydrogenation of ammonia-borane, a potential candidate for hydrogen storage and the challenges associated with its regeneration from the dehydrogenated mass. Moreover, we highlight the mechanistic intricacies, viability, sustainability and unresolved issues of allied chemical hydrogen storage avenues such as the CH3OH-CO2 cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.