Abstract

Abstract. We describe the University of Colorado mobile Solar Occultation Flux instrument (CU mobile SOF). The instrument consists of a digital mobile solar tracker that is coupled to a Fourier transform spectrometer (FTS) of 0.5 cm−1 resolution and a UV–visible spectrometer (UV–vis) of 0.55 nm resolution. The instrument is used to simultaneously measure the absorption of ammonia (NH3), ethane (C2H6) and nitrogen dioxide (NO2) along the direct solar beam from a moving laboratory. These direct-sun observations provide high photon flux and enable measurements of vertical column densities (VCDs) with geometric air mass factors, high temporal resolution of 2 s and spatial resolution of 5–19 m. It is shown that the instrument line shape (ILS) of the FTS is independent of the azimuth and elevation angle pointing of the solar tracker. Further, collocated measurements next to a high-resolution FTS at the National Center for Atmospheric Research (HR-NCAR-FTS) show that the CU mobile SOF measurements of NH3 and C2H6 are precise and accurate; the VCD error at high signal to noise ratio is 2–7 %. During the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) from 21 July to 3 September 2014 in Colorado, the CU mobile SOF instrument measured median (minimum, maximum) VCDs of 4.3 (0.5, 45) × 1016 molecules cm−2 NH3, 0.30 (0.06, 2.23) × 1016 molecules cm−2 NO2 and 3.5 (1.5, 7.7) × 1016 molecules cm−2 C2H6. All gases were detected in larger 95 % of the spectra recorded in urban, semi-polluted rural and remote rural areas of the Colorado Front Range. We calculate structure functions based on VCDs, which describe the variability of a gas column over distance, and find the largest variability for NH3. The structure functions suggest that currently available satellites resolve about 10 % of the observed NH3 and NO2 VCD variability in the study area. We further quantify the trace gas emission fluxes of NH3 and C2H6 and production rates of NO2 from concentrated animal feeding operations (CAFO) using the mass balance method, i.e., the closed-loop vector integral of the VCD times wind speed along the drive track. Excellent reproducibility is found for NH3 fluxes and also, to a lesser extent, NO2 production rates on 2 consecutive days; for C2H6 the fluxes are affected by variable upwind conditions. Average emission factors were 12.0 and 11.4 gNH3 h−1 head−1 at 30 °C for feedlots with a combined capacity for ∼ 54 000 cattle and a dairy farm of ∼ 7400 cattle; the pooled rate of 11.8 ± 2.0 gNH3 h−1 head−1 is compatible with the upper range of literature values. At this emission rate the NH3 source from cattle in Weld County, CO (535 766 cattle), could be underestimated by a factor of 2–10. CAFO soils are found to be a significant source of NOx. The NOx source accounts for ∼ 1.2 % of the N flux in NH3 and has the potential to add ∼ 10 % to the overall NOx emissions in Weld County and double the NOx source in remote areas. This potential of CAFO to influence ambient NOx concentrations on the regional scale is relevant because O3 formation is NOx sensitive in the Colorado Front Range. Emissions of NH3 and NOx are relevant for the photochemical O3 and secondary aerosol formation.

Highlights

  • Gases emitted from anthropogenic sources can have a profound impact on local air quality (Raga et al, 2001; Ramanathan and Feng, 2009) and climate (IPCC, 2013)

  • The absolute values of the difference between the vertical column densities (VCDs) averaged over identical time intervals measured by the HR-National Center for Atmospheric Research (NCAR)-Fourier transform spectrometer (FTS) and by the mobile Solar Occultation Flux (SOF) were used to quantify accuracy

  • The accuracy is composed of uncertainty in the cross section, the error associated with the spectral fit and the uncertainty on the retrieved VCD due to the instrument line shape (ILS) effect

Read more

Summary

Introduction

Gases emitted from anthropogenic sources can have a profound impact on local air quality (Raga et al, 2001; Ramanathan and Feng, 2009) and climate (IPCC, 2013). Emissions from large cattle feedlots contain ammonia (NH3; Hutchinson et al, 1982; Flesch et al, 2007), which is a precursor for aerosol via the formation of ammonium salts (Walker et al, 2004). HCHO as a radical source affects the oxidative capacity that is relevant for secondary aerosol formation (Fried et al, 1997; Franco et al, 2015). ∼ 10 % of NOx (= NO + NO2) emissions from vehicles is in the form of NO2 directly (Carslaw and Beevers, 2005) Another source of NOx are soils from feedlots (Denmead et al, 2008). The US Environmental Protection Agency (EPA) recently updated its guidelines for fenceline monitoring to better protect communities near refineries (Jones, 2015)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.