Abstract

The crystalline nanocluster phase, in which nanoscale metal oxide clusters are self-assembled in three-dimensional periodic arrays, is described. The crystalline assembly of nanoparticles functionalized with technologically relevant ligands offers the opportunity to obtain unambiguous structural information that can be combined with theoretical calculations based on the known geometry and used to interpret spectroscopic and other information. A series of Ti/O clusters up to approximately 2.0 nm in diameter have been synthesized and functionalized with the adsorbents catechol and isonicotinic acid. Whereas the isonicotinate is always adsorbed in a bridging monodentate mode, four different adsorption modes of catechol have been identified. The particles show a significantly larger variation of the Ti-O distances than observed in the known TiO(2) phases and exhibit both sevenfold overcoordination and five- and fourfold undercoordination of the Ti atoms. Theoretical calculations show only a moderate dependence of the catecholate net charge on the geometry of adsorption. All of the catechol-functionalized clusters have a deep-red color due to penetration of the highest occupied catechol levels into the band gap of the Ti/O particles. Spectroscopic measurements of the band gap of the Ti(17) cluster are in good agreement with the theoretical values and show a blue shift of approximately 0.22 eV relative to those reported for anatase nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.