Abstract

We study a model of a photon mode dipole-coupled to a medium of two-level oscillators in a microcavity in the presence of dephasing processes introduced by coupling to external baths. Decoherence processes can be classified as pair-breaking or non-pair-breaking in analogy with magnetic or non-magnetic impurities in superconductors. In the absence of dephasing, the ground state of the model is a polariton condensate with a gap in the excitation spectrum. Increase of the pair-breaking parameter $\gamma$ reduces the gap, which becomes zero at a critical value $\gamma_{C1}$; for large $\gamma$, the conventional laser regime is obtained in a way that demonstrates its close analogy to a gapless superconductor. In contrast, weak non-pair-breaking processes have no qualitative effect on the condensate or the existence of a gap, although they lead to inhomogeneous broadening of the excitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.