Abstract

The cross or soft anomalous dimension matrix describes the renormalization of Wilson loops with a self-intersection and is an important object in the study of infrared divergences of scattering amplitudes. In this paper it is studied for the Maldacena-Wilson loop in mathcal{N}=4 supersymmetric Yang-Mills theory and Euclidean kinematics. We consider both the strong-coupling description in terms of minimal surfaces in AdS5 as well as the weak-coupling side up to the two-loop level. In either case, the coefficients of the cross anomalous dimension matrix can be expressed in terms of the cusp anomalous dimension. The strong-coupling description displays a Gross-Ooguri phase transition and we argue that the cross anomalous dimension is an interesting object to study in an integrability-based approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.