Abstract

The hydrogenolysis of the aromatic C−O bond in aryl ethers catalyzed by Ni was studied in decalin and water. Observations of a significant kinetic isotope effect (k H/k D=5.7) for the reactions of diphenyl ether under H2 and D2 atmosphere and a positive dependence of the rate on H2 chemical potential in decalin indicate that addition of H to the aromatic ring is involved in the rate‐limiting step. All kinetic evidence points to the fact that H addition occurs concerted with C−O bond scission. DFT calculations also suggest a route consistent with these observations involving hydrogen atom addition to the ipso position of the phenyl ring concerted with C−O scission. Hydrogenolysis initiated by H addition in water is more selective (ca. 75 %) than reactions in decalin (ca. 30 %).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.