Abstract
The torsional oscillations are studied of a solid of revolution under the action of elastic torque inside a container with a viscous incompressible fluid. We prove the asymptotic stability of the static equilibrium. We use the two approaches: the direct Lyapunov and linearization methods. The global asymptotic stability is established using a one-parameter family of Lyapunov functionals. Then small oscillations are studied of the fluid-solid system. The linearized operator of the problem of a solid oscillating in a fluid can be realized as an operator matrix obtained by appending two scalar rows and two columns to the Stokes operator. This operator is therefore a two-dimensional bordering of the Stokes operator and inherits many properties of the latter; in particular, the spectrum is discrete. The eigenvalue problem for the linearized operator is reduced to solving a dispersion equation. Inspection of the equation shows that all eigenvalues lie inside the right (stable) half-plane. Basing on this, we justify the linearization. Using an abstract theorem of Yudovich, we prove the asymptotic stability in a scale of function spaces, the infinite differentiability of solutions, and the decay of all their derivatives in time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.