Abstract

Although there is consensus that both grid extensions and decentralized projects are necessary to approach universal electricity access, existing electrification planning models that assess the costs of decentralized solar energy systems do not include metrics of reliability or quantify the impact of reliability on costs. We focus on stand-alone household solar systems with battery storage in sub-Saharan Africa using the fraction of demand served to measure reliability, and develop a multistep optimization to compute efficiently the least-cost system with the fraction of demand served as a design constraint, and take into account the daily variation in solar resources and costs of solar and storage. We show that the cost of energy is minimized at approximately a 90% fraction of demand served, that current costs increase, on average, by US$0.11 kWh–1 for each additional ‘9’ of reliability, and that this reliability premium could be as low as US$0.03 kWh–1 in a plausible future price scenario. Decentralized solar electricity is an important tool for expanding electricity access. Using data from sub-Saharan Africa, researchers identify a systematic scaling between reliability and cost. Future scenarios suggest these systems will compete with centralized grids on both cost and reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.