Abstract
Two cavitation models with thermodynamic effects were established based on the Rayleigh-Plesset equation to predict accurately the cavitation characteristics in the high-temperature fluid. The evaporation and the condensation coefficient of the cavitation model were corrected. The cavitation flow of NACA0015 airfoil was calculated using the modified cavitation model, where the influence of the thermodynamic effects of airfoil cavitation was analyzed. The result showed that the pressure coefficient distribution and the bubble volume fraction simulated have the same tendency of Zwart-Gerber-Belamri model’s result. According to the experimental data, the two models provide more accurate results. At the room temperature, the values ofdpv/dTobtained by the two improved models are approximately equal. The difference between the two models’ results increases gradually with the temperature increasing, but it is still small. The simulation results are consistent with the experimental data when the evaporation coefficient is 10 and 1. When the evaporation coefficient is 1, the bubble growth is inhibited, the volume fraction becomes lower, and the cavitation area becomes flat. As the temperature increases, the cavitation area and the bubble volume fraction at airfoil front edge become larger, showing that the temperature plays a “catalytic” role in the cavitation process.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.