Abstract

This paper presents the membership function of finite (or infinite) sum (defined by the sup- t-norm convolution) of fuzzy numbers on Banach spaces, in the case of Archimedean t-norm having convex additive generator function and fuzzy numbers with concave shape function, which generalizes Hong and Hwang's results [1] of the real case. As applications, we calculate the membership function of the limit distribution of Yager's, Hamacher's and Dombi's sum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.