Abstract
For a compact $K$, a necessary condition for $C(K)$ to have the Controlled Separable Complementation Property is that $K$ be monolithic. In this paper, we prove that when $K$ contains no copy of $[0,\omega^\omega]$ and the set of points which admit a countable neighborhood base is a cofinite subset of $K$, then monolithicity of $K$ is sufficient for $C(K)$ to enjoy the Controlled Separable Complementation Property. We also show that, for this type of compacta $K$, the space $C(K)$ is separably extensible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.