Abstract

The incidence of malignant melanoma, the most dangerous form of skin cancer, is rising each year. However, some aspects of the tumor initiation and development are still unclear, and the current method of diagnosis, based on the visual aspect of the tumor, shows limitations. For these reasons, developments of new techniques are ongoing to improve basic knowledge on the disease and diagnosis of tumors in individual patients. This paper shows how electron paramagnetic resonance (EPR), a method able to detect free radicals trapped in melanin pigments, has recently brought its unique value to this specific field. The general principles of the method and the convenience of melanin as an endogenous substrate for EPR measurements are explained. Then, the way by which EPR has recently helped to assess the contribution of ultraviolet rays (UVA and UVB) to the initiation of melanoma is described. Finally, we describe the improvements of EPR spectrometry and imaging in the detection and mapping of melanin pigments inside ex vivo and in vivo melanomas. We discuss how these advances might improve the diagnosis of this skin cancer and point out the present capabilities and limitations of the method.

Highlights

  • Malignant melanoma is a skin tumor characterized by the uncontrolled proliferation of melanocytes

  • This paper shows how electron paramagnetic resonance (EPR), a method able to detect free radicals trapped in melanin pigments, has recently brought its unique value to this specific field

  • Technological developments in the field of magnetic resonance were achieved so that, nowadays, it is possible to apply the electron paramagnetic resonance spectroscopy and imaging to the detection of biological-free radicals, including those trapped in melanins, with a high sensitivity

Read more

Summary

Introduction

Malignant melanoma is a skin tumor characterized by the uncontrolled proliferation of melanocytes. EPR spectrometry is a method that detects the absorption of energy linked to the resonance phenomenon The quantity of this energy differs in function of the kind of radicals and their environment. This method was used to assess quantitatively the RMR formation in function of the exposition to different wavelength in the skin of a mouse model for which the action spectrum was already known [30] They observed that the 2 action spectra were identical from 303 to 434 nm, a range spanning both UVB and UVA. This result demonstrated that the EPR measurement of reactive melanin radicals could act as good indicator to determine the contribution of UVA and UVB in melanoma causation. These results still have to be confirmed on other animal species (including human), and we can predict that the controversy about UVA, UVB, and melanoma is far away from the end, but these preliminary results could bring the outcome faster than expected

The Detection and Growth State Assessment of Melanoma by EPR
Findings
Discussion and Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.